HAZARD MAPS

CEUS Workshop

May 9 – 10. 2006 Boston, MA

E. V. Leyendecker
U. S. Geological Survey / Emeritus

DESIGN MAPS

- BSSC Project 97 USGS / FEMA
 - Led to Recommendations for use of Design Ground Motion based on 2% PE in 50 yrs with deterministic constraints
- Project 07 USGS / FEMA
 - Will review prior decisions and possibly lead to new or modified recommendations

Project 97 Mission

- Review all maps, including new USGS maps.
- Recommend what maps should be used in design practice, not what maps should be used by USGS.

SEISMIC DESIGN PROCEDURE GROUP

Joe Hunt, Chairman
Roger D. Borcherdt
C. B. Crouse
James R. Harris
Jeffery K. Kimball
Charles A. Kircher
E. V. Leyendecker
Guy J. P. Nordenson
Todd W. Perbix
Chris D. Poland
Lawrence D Reaveley
Thomas A. Sabol
Roland Sharpe
John C. Theiss
Loring Wyllie, Jr. (ex-officio)

Lockheed Martin Energy Systems, Inc.
U. S. Geological Survey
Dames and Moore
James R. Harris & Company
U. S. Department of Energy
Charles Kircher & Associates
U. S. Geological Survey
Ove Arup & Partners
Ratti Swenson Perbix, Inc.
Degenkolb Engineers
Civil Engineering - University of Utah
Englekirk & Sabol, Inc.
Consulting Structural Engineer
EQE/Theiss
Degenkolb Engineers

WHY 2% P.E. IN 50 YEARS?

PROBABILITIES CONSIDERED

C 10% P.E. in 50 years

5% P.E. in 50 years

2% P.E. in 50 years

NORMALIZED HAZARD CURVES FOR SELECTED CITIES

UNIFORM HAZARD RESPONSE SPECTRA San Francisco, CA

UNIFORM HAZARD RESPONSE SPECTRA Charleston, SC

DESIGN GOAL

Resistance >= Applied Loads

Resistance and Loads Must be Compatible

Where did 2/3 come from?

COLLAPSE RESISTANCE >= COLLAPSE LOAD

Collapse Resistance >= 1.5 x Typical Code Resistance Collapse Load = 2% PE in 50 yrs GM

1.5 x Typical Code Resistance >= 2% PE in 50 yrs GM

Typical Code Resistance >= 2/3 x (2% PE in 50 yrs GM)

Effect of Multiplying by 2/3

CONSTRAINTS

- CNear well-defined faults transition from probabilistic ground motion (GM) to deterministic GM
- Use the median GM times 1.5 (intended to approximate one sigma) as the deterministic GM for the maps

Near-Fault Criteria

Near-Fault MCE

San Francisco

Paducah

Spectral response acceleration for 0.2 sec spectral ordinate

Spectral response acceleration for 0.2 sec spectral ordinate

Memphis/Shelby County Building Code

CIBC 2003 with 1996 10%/50 year maps for normal buildings.
COr IBC 2003 with Standard Building Code ground motions.

Comparison of Short Period S_{DS}

Code	Memphis
	City Hall
Deterministic - Median	0.60g
SBC (2.5 A _a – early 1970 data)	0.50g
IBC 2003	0.92g
IBC 2006	0.93g
1996 10%/50	0.25g
2002 10%/50	0.35g

Codes and Standards

ASCE 7 Minimum
Design Loads

IBC – International Building Code

Codes and Standards Schedule

PROJECT 007 – License to Build

- First Meeting will be this summer Set objectives, etc
- One conclustion could be no changes from Project 97
- Site conditions
- Constant Risk
- No foregone conclusions

GROUND MOTION TOOL

http://earthquake.usgs.gov/ research/hazmaps/

SEISMIC DESIGN VALUES FOR BUILDINGS

Ss and S1, Hazard Curves, Uniuform Hazard Spectra, and Residential Design Category